消防排烟风机系列
XGF(HTF)系列消防高温排烟风机
PYHL-14A消防排烟混流风机
HTFC型消防通风两用低噪声风机箱
      轴流风机系列
DFBZ系列低噪声方形壁式轴流风机
DZ系列低噪声轴流风机
T35系列轴流式通风机
T40系列轴流风机
CDZ型低噪声轴流风机
SF系列低噪声轴流风机
SDF系列隧道式轴流风机
移动岗位式轴流风机
边墙轴流风机
      混流/斜流风机系列
HLF(SWF)低噪声高效节能混流风机
HL3-2A高效混流风机
SJG管道斜流风机
GXF SJG斜流式通风机
      变压器风机,隧道风机系列
CFZ(DBF)低噪声变压器专用冷却风机
SDF系列 隧道式轴流风机
      离心风机、管道风机系列
T4-72、T4-79型系列离心风机
9-19、9-26型离心式通风机
CF系列离心风机
GDF系列离心管道风机
DF系列双吸式离心风机
DSQ无蜗壳离心风机箱
      屋顶风机系列
DWT-I型低噪声轴流屋顶排风机
DWT-II型低噪声离心式屋顶排风机
DWT-Ⅲ型低噪声离心轴向式屋顶风机
DWT-Ⅳ型无电力涡轮式屋顶排风机
WZT型屋顶自然通风器
      诱导风机系列
YDF系列喷流诱导风机
      通风器系列
BLD系列低噪声吸顶式房间通风器
      风机箱系列
DBF系列低噪声离心式风机箱
HTFC型消防通风两用低噪声风机箱
HLF-6系列低噪音、节能型混流式风机箱
      阀系列
防火/排烟阀、送风口、排烟口
止回阀
多叶调节阀
      风口系列
铝合金系列
      消声器系列
消声器
         风机知识
风机的失速、喘振和抢风
填加时间:2016-11-20

 

  一、失速
         轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。当风机流量减小时,w的方向角改变,气流冲角增大。当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。
       由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。这种现象称为旋转失速。
     与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量。

二、喘振
     风机的喘振,是指风机在不稳定区工况运行时,引起风量、压力、电流的大幅度脉动,噪音增加、风机和管道剧烈振动的现象。

     当风机在曲线的单向下降部分工作时,其工作是稳定的,一直到工作点K。但当风机负荷降到低于Qk时,进入不稳定区工作。此时,只要有微小扰动使管路压力稍稍升高,则由于风机流量大于管路流量(Qk>QG),工作点向右移动至A点,当管路压力PA超过风机正向输送的最大压力Pk时,工作点即改变到B点,(A、B点等压),风机抵抗管路压力产生的倒流而做功。此时,管路中的气体向两个方向输送,一方面供给负荷需要,一方面倒送给风机,故压力迅速降低。至C点时停止倒流,风机流量增加。但由于风机的流量仍小于管路流量,QC<QD,所以管路压力仍下降至E点,风同的工作点将瞬间由E点跳到F点(E、F点等压),此时风机输出流量为QF。由于QF大于管路的输出流量,此时管路风压转而升高,风机的工作点又移到K点。上述过程重复进行,就形成了风机的喘振。喘振时,风机的流量在QB-QF范围内变化,而管路的输出流量只在少得多的QE-QA间变动。
      所以,只要运行中工作点不进入上述不稳定区,就可避免风机喘振。轴流风机当动叶安装角改变时,K点也相应变动。因此,不同的动叶安装角度下对应的不稳定区是不同的。大型机组一般设计了风机的喘振报警装置。其原理是,将动叶或静叶各角度对应的性能曲线峰值点平滑连接,形成该风机喘振边界线,再将该喘振边界线向右下方移动一定距离,得到喘振报警线。为保证风机的可靠运行,其工作点必须在喘振边界线的右下方。一旦在某一角度下的工作点由于管路阻力特性的改变或其他原因,沿曲线向左上方移动到喘振报警线时,即发出报警信号提醒运行人员注意,将工作点移回稳定区。
      并联风机的风压都相等,因此负荷小的风机的动叶开度小,其性能曲线峰值点(K点)要低于另一台风机,负荷越低,K点低得越多。因此,负荷低的风机,其工作点就容易落在喘振区以内。所以,调节风机的负荷时,两台并列风机的负荷不宜偏差过大,以防止低负荷风机进入不稳定的喘振区。运行中,烟风道不畅或风量系统的进、出口挡板误关或不正确,系统阻力增加,会使风机在喘振区工作。并列风机动叶开度不一致或与指示与就地不符、自控失灵等情况,则引起风机特性变化,也会导致风机的喘振。应避免风机长期在低负荷下运行。


三、抢风
所谓抢风,是指并联运行的两台风机,突然一台风机电流(流量)上升,加一台风机电流(流量)下降。此时,若关小大流量风机的调节风门试图平衡风量时,则会使另一台小流量风机跳至最大流量运行。在调整风门投自动时,风机的动叶或静叶频繁地开大、关小,严重时可能导致风机电机超电流而烧坏。
  抢风现象的出现,是因为并列风机存在较大的不稳定工况区。有一个∞字型区域,若两台风机在管路系统1中运行,则P1点为系统的工作点,每台风机都在E1点稳定运行,此时抢风现象不会发生。如果由于某种原因,管路系统阻力改变至2(升高)时,比如辅助风门突然大幅度关小,则风机进入∞字型工作区域内运行。我们看P2点的工作情况,两台风机分别位于E2a 和E2点工作。大流量的风机在稳定区工作,小流量的风机在不稳定区工作,两台风机的不平衡状态极易被破坏。因此,便出现两台风机的抢风现象。
     为了消除抢风现象,对于送、引风机,可在锅炉点火或低负荷运行时,采用单台运行方式,待单台风机出力不能满足锅炉负荷需要时,再启动另一台风机并列运行。一旦发生抢风,就手动调整两台风机,保持适当的风量偏差(此时,风机并列特性的∞字型区域收缩),以避开抢风区域。

 

   文章来源:风机技术网

 
Copyright 2012 绍兴上虞安通风机设备有限公司 .All Rights Reserved    浙ICP备12014483号-1
主推风机产品:壁式风机方形轴流风机